If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-4x-125=0
a = 9; b = -4; c = -125;
Δ = b2-4ac
Δ = -42-4·9·(-125)
Δ = 4516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4516}=\sqrt{4*1129}=\sqrt{4}*\sqrt{1129}=2\sqrt{1129}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{1129}}{2*9}=\frac{4-2\sqrt{1129}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{1129}}{2*9}=\frac{4+2\sqrt{1129}}{18} $
| -5+2v=v+1 | | (1/2)*(2x-4)=(-3/4)*(4x-16) | | 28+(10m-30)=180 | | 9x-12.29=8x+12.71 | | 2(g+6)=20= | | 129+23+x=180 | | 109+(2a+7)=180 | | 7-x=-52 | | 3,075=41(p+25) | | 0=-450(2t+-7) | | -2x-3x=-12-3x | | 9x−12.29=8x+12.71 | | x/1.5-6=2 | | 3,075=41(p | | 77=(3w-1) | | A+2a+3(2a)=40 | | 7y−9=1−3y | | 2x^+3^-2=0 | | 4-y/5=2-2y/8= | | 10p–3=17 | | -4x+3=-4x+-4-2 | | -9n=-8n−7 | | 25-1/5x=16 | | -7+8j=9j | | c+35=3 | | 5xx2x=14 | | (-1/3)(2x+5)=7 | | 9r–2=43 | | 0.69x+35=1.39x | | z4+12=12 | | n-1.4=3.1 | | 4w+3w-6w=w+15+2w-3w= |